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Consideration is given to an elastic medium with a finite time of relaxation of the heat flux; the equa-
tions of motion of the medium are written in components of the tensors of force and couple stresses.
Using the general theory of characteristics the explicit formulas for determination of the velocities of
propagation of the discontinuity surfaces are obtained and the equations of the characteristic surfaces
are derived.

The issue of thermoelastic stresses in a micropolar isotropic medium has been considered by a num-
ber of authors [1–4]. The problem of the existence of nonstationary processes in such media is investigated
in [5, 6]. Below we analyze the propagation of discontinuity surfaces in a two-dimensional micropolar me-
dium with a finite time of relaxation of the heat flux in the context of the theory of characteristics of partial
differential equations. The expediency of such an approach is explained by the fact that the applications of
this method in specific divisions of the mechanics of continuous media are associated with overcoming sig-
nificant difficulties; therefore, its realization is of both theoretical and practical value.

The stressed-strained state of an elastic isotropic micropolar body is described by the tensors of force
and couple stresses of the following form [7]:

σki = λδkienn + (µ + α) eki + (µ − α) eik – νθ , (1)

µki = βδki ϕm,m + (γ + ε) ϕk,i + (γ − ε) ϕi,k , (2)

where eki = uk,i + εkimϕm is the microstrain tensor, u = (u1, u2, u3) is the displacement vector, ϕ = (ϕ1, ϕ2,
ϕ3) is the microrotation vector, εkim is the Levi–Civita pseudotensor, δki is the Kronecker tensor, enn =
e11 + e22 + e33, and ϕm,m = ϕ1,1 + ϕ2,2 + ϕ3,3, i, k, m, n = 1, 3

___
. Let us substitute (1)–(2) into the equations of

motion [7]

σki,k + Xi = ρu
..

i , (3)

µki,k + εimnσmn + Yi = jρϕ
..

i . (4)

Here Xi and Yi are the mass forces and the body couples, j is the measure of rotary inertia, and i, k, m, n =
1, 3
___

. We have [7]
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(µ + α) ∆ui + (λ + µ − α) uk,ik + 2αεikl ϕl,k + Xi = ρu
..

i + νθ,i , (5)

(γ + ε) ∆ϕi + (β + γ − ε) ϕk,ik + 4αεiklul,k − 4αϕi + Yi = jρϕ
..

i . (6)

In order to write the last system in components of the tensors of force and couple stresses we differentiate
Eqs. (5) and (6) with respect to xj. We obtain

(µ + α) ∆ui,j + (λ + µ − α) uk,kij + 2αεikl ϕl,kj + Xi,j = ρu
..

i,j + νθ,ij , (7)

(γ + ε) ∆ϕi,j + (β + γ − ε) ϕk,kij + 4αεiklul,kj − 4αϕ i,j + Yi,j = jρϕ
..

i,j . (8)

Under conditions of plane strain, the micropolar elastic body is characterized by the following matri-
ces of the force- and couple-stress tensors [7]:

σ = 





















σ11

σ21

0

     

σ12

σ22

0

     

0

0

σ33

 




















 ,     µ = 





















0

0

µ31

     

0

0

µ32

     

µ13

µ23

0

 




















 .

In this case, the components [7] σ33, µ31, and µ32 are calculated from the formulas

σ33 = 
(σ11 + σ22) λ

2 (λ + µ)
 + 

µν
λ + µ

 θ ,   µ31 = 
γ − ε
γ + ε

 µ13 ,   µ32 = 
γ − ε
γ + ε

 µ23 .

Therefore, the system of equations of motion will include six equations relative to σij and µi3, i, j = 1, 2.
From (1), (2), and (4) we have

ui,i = 
1

2µ
 



σii − 

λ
2 (λ + µ)

 (σ11 + σ22)



 + 

νθ
2 (λ + µ)

 ,

u1,2 = 
1

4µ
 (σ12 + σ21) + 

1

4α
 (σ12 − σ21) + ϕ3 ,  ϕ1,3 = 

µ13

γ + ε
 ,

(9)

u2,1 = 
1

4µ
 (σ12 + σ21) − 

1

4α
 (σ12 − σ21) − ϕ3 ,  ϕ2,3 = 

µ23

γ + ε
 ,

ϕ
..

3 = 
1
jρ

 (µ13,1 + µ23,2 + σ12 − σ21 + Y3) .

Upon simple transformations, system (7) and (8) will take the form

(λ + 2µ) ∆ (σ11 + σ22) + 2ν (µ∆θ − ρθ
..
) + X1,1 + X2,2 = ρ (σ

..
11 + σ

..
22) ,

µ + α
2µ

 ∆ (σ22 − σ11) + 
λ + µ − α
2 (λ + µ)

 (σ22,22 − σ22,11 + σ11,22 − σ11,11) −

− 
αν
λ + µ

 (θ,11 − θ,22) + 
4α
γ + ε

 µ23,1 + X2,2 − X1,1 = 
ρ

2µ
 (σ
..

22 − σ
..

11) ,
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µ + α
2µ

 ∆ (σ12 + σ21) + 
λ + µ − α
λ + µ

 (σ11,12 + σ22,12) − 
2αν
λ + µ

 θ,12 +

(10)

+ 
2α
γ + ε

 (µ13,1 − µ23,2)+ X1,2 + X2,1 = 
ρ

2µ
 (σ
..

12 + σ
..

21) ,

µ + α
2α

 ∆ (σ12 − σ21) + 
2 (µ + α)
γ + ε

 (µ13,1 + µ23,2) + X2,1 − X1,2 =

= 
ρ

2α
 (σ
..

12 − σ
..

21) + 
2
j
 (µ13,1 + µ23,2 + σ12 − σ21 + Y3) ,

∆µ13 + 2 (σ12,1 − σ21,1) + Y3,1 = 
jρ
γ + ε

 µ
..

13 ,   ∆µ23 + 2 (σ12,2 − σ21,2) + Y3,2 = 
jρ
γ + ε

 µ
..

23 .

Here

∆ = 
∂2

∂x1
2 + 

∂2

∂x2
2 .

For this system to be closed we add the hyperbolic law of thermoelasticity to it, which for a two-di-
mensional problem has the form [4, 8]

k∆θ − cv (θ
.
 + τθ

..
) = νθ0 (τ (e

..
11 + e

..
22) + e

.
11 + e

.
22) .

Applying relations (9) to the last equation, we obtain

k∆θ − 



cv + 

v2θ0

λ + µ




 (θ
.
 + τθ

..
) = 

νθ0

2 (λ + µ)
 (τ (σ

..
11 + σ

..
22) + σ

.
11 + σ

.
22) . (11)

We specify the initial data for system (10)–(11) on the surface Z(t, x1, x2) = const and pass to new
variables according to the formulas [9, 10]

∂yj (t, X)
∂xk

 =  ∑ 

l=0

2

 
∂yj

∂Zl
 
∂Zl

∂xk
 ,

(12)∂2yj

∂xk∂xn
 =   ∑ 

l,m=0

2

  
∂2yj

∂Zl∂Zm
 
∂Zl

∂xk
 
∂Zm

∂xn
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2

 
∂yj

∂Zl
 
∂2Zl

∂xn∂xk
 ,

Z B Z0 ,   t B x0 .

We substitute relations (12) into Eqs. (10)–(11) and write those terms that contain the partial derivatives of
second order in Z, since only they will be important in what follows [9, 10]. As a result we will have 


 (λ + µ) g2 − ρp0

2
  




∂2σ11

∂Z2  + 
∂2σ22

∂Z2




 + 2ν 

∂2θ

∂Z2  µg2 − ρp0
2
  + ... = 0 ,
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


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2µ
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

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
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∂Z2  + 
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∂Z2


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
 − 
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2 ×
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


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∂Z2  + 
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∂Z2




 − 
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ρ
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
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∂2σ21
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
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
 + ... = 0 ,

∂2µ13

∂Z2  



g2 − 

jρ

γ + ε
 p0

2


 + ... = 0 ,   

∂2µ23

∂Z2  



g2 − 

jρ

γ + ε
 p0

2


 + ... = 0 ,


kg2 − (a + cv) τp0

2
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∂2θ

∂Z2 − bτp0
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∂2σ11
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 + ... = 0 ,

where 

p0 = 
∂Z

∂t
 ;   pk = 

∂Z

∂xk
 ;   g2 = p1

2 + p2
2 ;   a = 

ν2θ0

λ + µ
 ;   b = 

νθ0

2 (λ + µ)
 ,   k = 1, 2 .

The equation of the characteristic surface Z(t, x1, x2) = const will be obtained from the condition of unsolv-

ability of the last system of equations relative to the derivatives 
∂2σij

∂Z2 , 
∂2µi3

∂Z2 , and 
∂2θ
∂Z2, i, j = 1, 2, i.e., from

the condition that the determinant composed of the coefficients of these derivatives is equal to zero [9, 10]:

det �ωklN = 0 , (13)

where

ω11 = ω12 = (λ + µ) g2 − ρp0
2 ;   ω43 = ω34 = ω33 = − ω44 = 

µ + α
2µ

 g2 − 
ρ

2µ
 p0

2 ;

ω21 = − 
µ + α

2µ
 + 
λ + µ − α
2 (λ + µ)

 (p2
2 − p1

2) + 
ρ
2µ

 p0
2 ;   ω22 = 

µ + α
2µ

 + 
λ + µ − α
2 (λ + µ)

 (p2
2 − p1

2) − 
ρ

2µ
 p0

2 ;

ω31 = ω32 = 
λ + µ − α
λ + µ

 p1p2 ,   ω55 = ω66 = g2 − 
jρ
γ + ε

 p0
2 ;

ω77 = kg2 − (a + cv) τp0
2 ,   ω72 = ω71 = − bτp0

2 ,   ω17 = 2ν (µg2 − ρp0
2) ;
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ω27 = 
αν
λ + µ

 (p1
2 − p2

2) ,   ω37 = − 
2αν
λ + µ

 p1p2 .

All the remaining ωkl, k and l = 1, 7
___

, are equal to zero. We note that the constants a and b determine the
conjugation of the thermal field and the strain field; b is of the order of 10−2–10−3, while the constant a is
approximately equal to 104–105 N/(m2⋅deg) (Table 1 and [11, 12]). Therefore, the components ω7i = −bτp0

2, i
= 1, 2, can be disregarded since b is small and has the order of 10−13–10−14 sec in the product with τ (for
metals τ � 10−11 sec [13]).

From (13), without taking account of ω7i, i = 1, 2, we obtain


 (µ + α) g2 − ρp0

2


3
  (γ + ε) g2 − jρp0

2

2
  (λ + 2µ + α) g2 − ρp0

2
  

kg2 − τ (cv + a) p0

2
  = 0 .

This yields the following velocities of propagation of the discontinuity surfaces V = −p0
 ⁄ g [3, 9]:

V1 = √γ + ε
ρ

 ,   V2 = √µ + α
ρ

 ,   V3 = √ λ + 2µ + α
ρ

 ,   V4 = √ k
τ (cv + a)

 . (14)

Here V1 is the velocity of propagation of the microrotation wave [14], V2 and V3 are the velocities of propa-
gation of the elastic waves, and V4 is the velocity of the thermoelastic wave (heat wave accompanied by the
strain field).

We expand the determinant (13), taking into account all the components ωkl, k and l = 1, 7
___

. We ob-
tain


 (µ + α) g2 − ρp0

2


3
  (γ + ε) g2 − jρp0

2


2
 2bτνp0

2 (µg2 − ρp0
2) + (kg2 − τ (cv + a) p0

2) ((λ + 2µ) g2 − ρp0
2)  = 0 . (15)

From Eq. (15) for the velocities of propagation of the discontinuity surfaces we will have

P1 = V1 = √γ + ε
jρ

 ,   P2 = V2 = √µ + α
ρ

 ,   P3,4 = √1
2

 A % √A2 − 4B    , (16)

where

A = 
ρk − τ (2νbµ − (λ + 2µ) (cv + a))

ρτcv
 ,   B = 

k (λ + 2µ)
ρτcv

 .

In formulas (16), the velocity P3 belongs to the elastic wave accompanied by the thermal field and the veloc-
ity P4 belongs to the heat wave accompanied by the strain field. As follows from these formulas, the micro-
polar effects exert no influence on the propagation of thermoelastic waves and lead only to the appearance of
new types of waves (in our case, of the wave of microrotations) [14].

TABLE 1. Values of the Connectivity Coefficients a and b

Material
Elastic constants, 1010 N/m2 Thermoelastic 

constant ν, 103 N/(m2⋅deg)
Connectivity coefficients

λ µ a, N/(m2⋅deg) b

Silver 8.108 3.378 5905.2 88955 0.0075

Lead 4.006 1.012 3980.6 92527 0.012

Molybdenum 18.880 12.280 4060.0 15500 0.00191
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Let us calculate the velocities Vk and Pk, k = 3, 4, of propagation of the elastic and thermoelastic
waves in silver, lead, and molybdenum at the temperature θ0 = 293 K (Table 2) (selection of these metals is
attributed to the different character of propagation of the waves).

As follows from Table 2, in silver, the mechanical and thermal fields are connected to a considerable
extent, i.e., a temperature change leads to significant strains and conversely. This can be judged from the
difference of the velocities P3 and P4 from the velocities V3 and V4 in value. In molybdenum, P3 C V3 and
P4 C V4, i.e., the effects of connectivity of the strain and temperature fields are absent, in practice. The case
where the velocity P3 of the thermoelastic wave virtually coincides with the velocity of the elastic wave is
intermediate; the differences manifest themselves in the velocities V2 and P2.

We note that in the above calculations the relaxation time of the heat flux τ has been taken to be
1⋅10−11 sec [13], whereas for the metals the exact values of τ have not been determined and sometimes one
takes τ to be 0.5⋅10−11 sec [15]. Formulas (14) and (16) for V4 and Pk, k = 3, 4, make it possible to investi-
gate the influence of the relaxation time of the heat flux on the velocity of propagation of the thermoelectric
waves. Thus, the functions of the velocities of propagation of the thermoelastic waves V4(τ) are analogous for
all the materials and represent the dependences V4 = Kf(τ), where f(τ) = √ 1 ⁄ τ  and K is a coefficient depend-
ent on the mechanical and thermal properties of the material; for τ → 0 we have f(τ) >> K. Therefore, as the
relaxation time of the heat flux decreases the velocity V3 tends to infinity. With account for the effect of
connectivity of the thermal and strain fields the dependence of the velocity of the thermoelastic wave P4(τ)
can significantly differ from V4(τ). Thus, for example, in silver, the velocity P4 virtually remains constant
throughout the interval of change of the time τ from 0 to 1⋅10−11 sec, whereas in lead and molybdenum the
velocities P4 increase and differ from V4 only for τ D 10−14 sec, as the calculation shows (see Fig. 1). When
τ → 0 the velocity P4 tends to a finite limit and the velocity P3 → ∞, which can be interpreted as passage
from the generalized theory of heat conduction to a classical theory in which one takes τ to be 0 [16] (see
Fig. 1).

TABLE 2. Values of the Velocities of Propagation of Thermoelastic Waves

Material ρ, kg/m3 λ,
W/(m⋅deg)

cv, 103

J/(m3⋅deg)
Velocities of elastic and thermoelastic waves, m/sec

V3 P3 V4 P4

Silver 10505 418 2454 3762 4321 4054 3593

Lead 11342 34.89 1458 2306 2407 1500 1482

Molybdenum 9010 162 2188 6944 6964 2712 2713

Fig. 1. Velocities of the thermoelastic wave P4 and P3 vs. relaxation time
of the heat flux τ: 1) silver; 2) lead; 3) molybdenum. P, m/sec; τ, sec.
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By using Eq. (15) we can easily obtain the equations of bicharacteristics which form the characteristic
surface and are the components of the group velocity of propagation of the wave. To do this, for example,
we express p0 as follows:

p0 = g √γ + ε
jρ

 .

The equations of bicharacteristics will take the form [9, 10]

dxk

dt
 = 

dp0

dpk
 = 

pk

g
 √γ + ε

jρ
 ,

or at t = 1

xk = 
pk

g
 √γ + ε

jρ
 = cos αk √γ + ε

jρ
 ,

where cos αk is the direction cosine of the normal to the characteristic surface, k = 1, 2 [9, 10]. Then the
equation of the surface, formed by the bicharacteristics, upon obvious transformations will take the form

x1
2 + x2

2 = 
γ + ε

jρ
 .

Analogously we can derive the surfaces of bicharacteristics for expressions (15) and (16). The set of all the
bicharacteristics will compose the characteristic surface Z(t, x1, x2) = const.

Consideration of the three-dimensional case does not introduce fundamental difficulties and can be
performed according to the scheme developed above.
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